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Abstract: Activation of the platelet surface receptor GPIIb/IIIa is the final pathway of platelet aggregation,
regardless of the initiating stimulus. RGD analogues, peptidomimetics and monoclonal antibodies to
GPIIb/IIIa have been developed targeting the blockage of the receptor and inhibition of the fibrinogen
binding. However, the intrinsic activating effect of GPIIb/IIIa blockers is widely discussed as one potential
contributing factor for the disappointing outcome of trials with GPIIb/IIIa inhibitors. An alternative method
for thrombus prevention could be the use of specific fibrinogen blockers since they will act at the final step of
the platelet aggregation and are expected to leave the receptor unaffected. To achieve this target the design
of the fibrinogen ligands could be based on (i) sequences derived from GPIIb/IIIa ligand binding sites, and
(ii) sequences complementary to RGD and/or to fibrinogen γ -chain. The available information, which could
be used as a starting point for developing potent fibrinogen ligands, is reviewed. Copyright  2004 European
Peptide Society and John Wiley & Sons, Ltd.
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GPIIB/IIIA FUNCTION AND DRAWBACKS OF
USING ITS BLOCKERS AS ANTI-THROMBOTIC
AGENTS

Integrins are non-covalently associated hetero-
dimers of α and β subunits. They belong to a super-
family of cell surface receptors that mediate adhesive
processes in many biological functions [1–3]. Inte-
grin mediated cell adhesions have important roles
in cell anchorage, migration, proliferation, differen-
tiation, lymphocyte homing and blood clotting [4,5].
The GPIIb/IIIa receptor, specific to platelets and
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megakaryocytes, belongs to the β3 family and is
primarily responsible for platelet aggregation [6,7].
GPIIb/IIIa like other integrins, is a non-covalently
associated heterodimeric complex composed of the
subunits GPIIb (αIIb) and GPIIIa (β3). Under rest-
ing conditions, it has low affinity for its ligands
(Figure 1A) and is activated either when platelets
adhere to subendothelium matrix (Figure 1B) or are
stimulated by agonists such as ADP, thrombin and
epinephrine, etc. (Figure 2A) [8]. Activation induces
conformational changes and the receptor acquires
a high affinity binding for its ligands, principally
fibrinogen [9,10]. The binding of fibrinogen leads to
platelet aggregation, an early step in the generation
of a thrombus (Figure 2B). Anti-thrombotic strate-
gies are based on the inhibition of platelet adhesion
and aggregation. One approach to antiplatelet ther-
apy is to block the primary stimulus by any of several
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different agonists, e.g thrombin, epinephrine, etc.
[11–13]. Another approach involves the interrup-
tion of the signal transduction mechanism, which
follows the agonist binding to the platelet surface.
Intracellular signaling in platelets leads to the acti-
vation of arachidonic acid metabolism and platelet
secretion, with the release of thromboxane A2 and

ADP, which contribute largely to platelet recruitment
by the growing thrombus. Specific inhibitors of the
enzyme thromboxane synthase and the thrombox-
ane A2 receptor have been developed to intercept the
arachidonic acid metabolic pathway [14]. However,
the specific inhibition of a particular agonist leaves
several alternative routes open to platelet activa-
tion (Figure 2A). To overcome this problem, specific
inhibition of the interaction between GPIIb/IIIa and
fibrinogen has been an attractive target of exten-
sive research (Figure 3A). This interest arises from
the fact that the intervention occurs at the final
common step of the platelet aggregation pathway.

Integrins, including GPIIb/IIIa, can recognize a
common tripeptide motif, the Arg-Gly-Asp (RGD)
sequence. This motif, originally identified as the
cell attachment domain on fibronectin, is present
in a surprisingly large number of adhesive glyco-
proteins including fibrinogen, von Willebrand fac-
tor, fibronectin etc [5,7,15]. Integrin GPIIb/IIIa
binds fibrinogen via recognition sequences RGDS
(α572–575), RGDF (α95–98) and HHLGGAKQAGDV
(γ400–411) [16–19]. Small RGD and γ -chain based
peptides inhibit the glycoprotein adhesion and the
platelet aggregation as well. Thousands of RGD ana-
logues, peptidomimetics and monoclonal antibodies
to GPIIb/IIIa have been developed targeting the
blockage of the receptor ligand interaction [20–33].
Some of them are currently used in clinical trials.
In addition, a family of small proteins obtained from

Figure 1 Schematic representation of the platelets under physiological conditions (A) and their activation induced by
adhesion to subendothelium substrates (von Willebrand factor, collagen) (B).
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Figure 2 Binding of various agonists to their receptors induces platelet activation and intracellular signaling (A). GPIIb/IIIa
acquire the high affinity binding for fibrinogen leading to thrombus formation (B). The symbols are the same as those in
Figure 1.

Figure 3 Inhibition of platelet aggregation by GPIIb/IIIa blockers (A) and clustering of the activated GPIIb/IIIa induced by
GPIIb/IIIa blockers leading to outside-in signaling (B). The symbols are the same as those in Figure 1.

snake venoms, called disintegrins, which possess
the RGD or the KGD sequence are among the most
potent inhibitors of GPIIb/IIIa [34].

Despite the very different nature of the GPIIb/IIIa
inhibitors, their mechanism of action is similar.

Their competition with fibrinogen for the target
receptor GPIIb/IIIa results in the inhibition of
platelet aggregation. All the RGD- or fibrinogen
γ -chain dodecapeptide-based inhibitors possessing
specificity and high affinity for the receptor bind to
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resting and activated forms of GPIIb/IIIa [35,36].
It is well documented that besides the receptor
conformational alteration upon agonist-induced
platelet activation, ligand binding to GPIIb/IIIa
induces further conformational changes of the
receptor extracellular domain, resulting in cluster-
ing (Figure 3B) and the exposure of neoantigenic
sites termed ligand-induced binding sites (LIBS)
[37–39]. LIBS modulate secondary function by shift-
ing the conformational equilibrium in the presence
of ligand [40,41]. Some of the affected functions
include the secondary wave of platelet aggrega-
tion, platelet adhesion to collagen, clot retraction
and platelet secretion [42,43]. The intrinsic activat-
ing effect of GPIIb/IIIa blockers is widely discussed
as one potential contribution factor for the disap-
pointing outcome of trials with GPIIb/IIIa inhibitors
[25,26,44,45]. Although the existence of an acti-
vating property of GPIIb/IIIa blockers leading to
platelet aggregation under physiological conditions
is questioned [46,47], the ligand-induced conforma-
tional alteration, activation, clustering and signaling
of the receptor have been extensively documented
[39,40,48–61]. The finding that RGD- and fibrino-
gen γ -chain based-ligands and other ligand mimetic
peptide sequences act directly or indirectly as par-
tial agonists of integrin function raises some key
questions. Is the development of specific GPIIb/IIIa
blockers a suitable approach in anti-platelet ther-
apy? Could fibrinogen ligands be used? The latter
could act at the final common step of the platelet
aggregation pathway without affecting the state of
the receptor.

The aim of this review article is to focus on
the accumulated knowledge of GPIIb/IIIa ligand
binding sites, which could be the starting point
for the development of specific fibrinogen ligands
as potential candidates for the anti-platelet therapy
(Figure 4). Inhibition of the fibrinogen binding to
GPIIb/IIIa using fibrinogen blockers requires agents
that could specifically recognize the RGD and/or
the fibrinogen γ -chain sequences, other fragments
or the intact fibrinogen. To achieve this target the
design of the fibrinogen ligands could be based
on: (i) sequences derived from GPIIb/IIIa ligand
binding sites and (ii) sequences complementary to
RGD and/or to fibrinogen γ -chain.

GPIIB/IIIA LIGAND BINDING SITES

The studies for determining the binding sites of
the GPIIb/IIIa receptor started three decades ago.

Figure 4 Schematic representation of the inhibition of
platelets aggregation by fibrinogen blockers. The receptor
remains unaffected overcoming the clustering and the
additional outside-in signaling. The symbols are the same
as those in Figure 1.

Substantial data have been accumulated regarding
the location of potential ligand contact sites within
GPIIb/IIIa. Combinations of immunological, bio-
chemical, mutational approaches and peptide stud-
ies have been applied for mapping epitopes and
identifying residues of GPIIb/IIIa implicated in lig-
and binding function.

Studies using anti-peptide antibodies and recom-
binant mutant fibrinogen suggest that platelet
GPIIb/IIIa interacts primarily with the γ -chain
sequence rather than with RGD sequences in fib-
rinogen [62–65]. Both the GPIIIa and the GPIIb
subunits of integrin participate to the ligand-binding
capability of the receptor involving their amino-
terminal portions [35,66–70]. Experiments with
radiolabeled, photoactivatable aryl azide RGDS and
HHLGGAKQAGDV containing derivatives showed
that the binding sites on the receptor for the
two peptides do not appear to be entirely identi-
cal [70]. Little labeling of the GPIIb/IIIa complex
with either the GRGDSC or the HHLGGAKQAGDV
derivative was observed in the absence of platelet
activation. The extent of labeling was markedly
enhanced when the platelets were activated with
thrombin. From this study it was concluded that
the RGDS containing derivative binds on both
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subunits, whereas the HHLGGAKQAGDV contain-
ing derivative specifically binds only on subunit
GPIIb.

Ligand Binding Sites on the GPIIIa Subunit

The chemical cross-linking approach using pep-
tide inhibitors derived from adhesion proteins
was initially applied. A radioiodinated fibronectin
derived RGD peptide (KYGRGDS) was cross-linked
to thrombin-stimulated washed platelets [35]. It was
found that the RGD peptide preferentially binds to
GPIIIa and much more efficiently on stimulated com-
pared with unstimulated platelets. Thrombin was
shown to be more effective than ADP in enhancing
cross-linking of the peptide. The ligand recogni-
tion site was estimated to include GPIIIa residues
109–171 [71]. This 63-amino acid stretch of GPIIIa
is highly conserved among integrin β-subunits and
has been postulated to participate in the recognition
of RGD sequences within adhesive proteins [72]. A
monoclonal antibody produced against the synthetic
peptide GPIIIa 109–128 has been shown to interact
with thrombin or ADP stimulated washed platelets
and to inhibit fibrinogen binding and platelet aggre-
gation [73]. There were no reported data to pro-
vide evidence that this peptide (GPIIa 109–128)
inhibits either platelet aggregation or fibrinogen
binding. However, the GPIIIa 118–131 synthetic
peptide was shown to function both as a ligand
and as a cation-binding site [74,75]. This peptide
blocks platelet aggregation and platelet adhesion
to fibrinogen and inhibits the binding of fibrino-
gen to purified GPIIb/IIIa. The formation of GPIIIa
118–131/RGDF and GPIIIa 118–131/GRGDSP sto-
ichiometric complexes evidenced by electrospray
ionization mass spectrometry suggests that this
region is a putative RGD ligand binding site on
the GPIIIa subunit. These results were supported
by the observation that the peptide GPIIIa 118–131
contains the sequence DDLW (residues 126–129)
which was identified by the phage display libraries
technology to be an RGD binding motif [76]. The
overlapping domain GPIIIa 100–348 was also sug-
gested to play a prominent role in the binding of
fibrinogen to its platelet receptor [77]. This con-
clusion was based on a combination of chemical
and enzymic cleavage procedures of GPIIIa in whole
platelets, synthetic peptides and enzyme immunoas-
say studies. The importance of the experimental
approach used for determining the ligand binding
sites on GPIIb/IIIa receptor was proved by chemical
cross-linking studies. Significant differences of the

peptide cross-linking to GPIIb/IIIa were observed
in solution and in activated platelets [78]. Four
peptides CKRKRKRKRRGDV, (α1), GGRGDF (α2),
CVHHLGGAKQAGDV (γ1) and CGAKQAGDV (γ2)
incorporating a photoactivable cross-linker, a flu-
orescent reporter group, an amino acid sequence
as spacer and fibrinogen α- and γ - chain derived
sequences were used to study the ligand binding
sites of GPIIb/IIIa in solution. By comparing the
results obtained in solution with those in activated
platelets, it was concluded that, while in acti-
vated platelets the RGD and KQAGDV peptides bind
mainly to GPIIIa and GPIIb subunits, respectively, in
solution both types of peptides bind indiscriminately
to GPIIb and GPIIIa, regardless of the peptide length
[66,71,78]. The identified sequence stretches cor-
responding to the tryptic peptides of GPIIIa within
which the inhibitory peptides (γ1, γ2, α1 and α2)
cross-linked to purified GPIIb/IIIa in solution were
9–37 for γ1, 63–83 and 303–350 for α1, 303–350
for γ2 and 151–199 for α2.

Aimed at determining the binding sites on GPI-
IIa, synthetic peptides were also used. Peptides
derived from residues 1–288 of the amino-terminal
sequence of GPIIIa were tested for their abilities
to block the binding of fibrinogen and other adhe-
sive proteins to GPIIb/IIIa [79]. It was found that
a specific sequence of 12 amino acids within GPI-
IIa (SVSRNRDAPEGG, residues 211–222) blocked
the binding of at least four adhesive proteins (fib-
rinogen, fibronectin, von Willebrand factor and vit-
ronectin) to purified GPIIb/IIIa. This sequence is
highly conserved between the β-subunits of the
other two families of the integrin superfamily, the
fibronectin receptor family (β1) and the leukocyte
receptor family (β2) [80,81]. In addition to the GPIIIa
211–222 sequence, peptides GPIIIa 204–222 and
211–229 inhibited fibrinogen binding to immobi-
lized GPIIb/IIIa, while peptides GPIIIa 204–216 and
217–229 did not have any significant effect. From
dissociation experiments of GPIIb/IIIa and the fact
that the peptide 211–221 does not induce GPIIb
to become a substrate for thrombin it was con-
cluded that the GPIIb/IIIa complex does not undergo
major conformational changes when incubated with
the GPIIIa peptide. Therefore, this peptide binds
directly to fibrinogen and fibronectin [79]. How-
ever, studies with synthetic peptides derived from
the GPIIIa sequence 211–221 have shown that
these GPIIIa peptides bind specifically to GPIIb/IIIa
and not to fibrinogen [82]. Evidence from vari-
ous sources suggest that peptides 211–221 (SVS-
RNRDAPEG), 214–221 (RNRDAPEG) and 214–218
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(RNRDA) of GPIIIa, like RGDS, bind at or near
the fibrinogen binding site. This conclusion was
supported by the following data: (i) the binding of
RGDV and GPIIIa 214–221 was mutually exclusive.
RGDV eluted GPIIb/IIIa bound to a GPIIIa 214–221
affinity column and, similarly, GPIIIa 214–221 and
211–221 eluted GPIIb/IIIa bound to an RGDS col-
umn; (ii) GPIIIa 214–218 was capable of inducing
a conformational change in GPIIb/IIIa similar to
RGDS and (iii) RGDV and GPIIIa 214–221 peptides
inhibited the binding of pl-55 and PAC-1, two mon-
oclonal antibodies that recognize only the activated
complex and that are thought to bind at or near
the fibrinogen binding site [82,83]. Among the above
mentioned peptides, the GPIIIa sequence 214–218
was proposed as the most active in inhibiting fib-
rinogen binding to purified GPIIb/IIIa.

The high homology between the platelet GPIIIa
217–231 sequence and similar regions of other β

subunits of integrin receptors leads to the hypoth-
esis that this region may participate in ligand
binding [84]. Enzyme-linked immunosorbent assays
evidenced that the synthetic peptide DAPEGGF-
DAIMQATVY (217–231 (Y)) binds to fibrinogen, von
Willebrand factor and fibronectin and inhibits bind-
ing of GPIIb/IIIa receptor to immobilized fibrinogen.
Interestingly, an analogous peptide in which Pro 219
was substituted with alanine did not bind to fibrino-
gen. The inhibitory effect of the GPIIIa 217–230
peptide on ADP-induced platelet aggregation and
125I-fibrinogen binding to ADP-stimulated platelets
was also confirmed [85]. Cross-linking experiments
of 125I-peptide 217–230 (Y) with fibrinogen showed
that the interaction of the GPIIIa 217–230 sequence
with fibrinogen occurs through an RGD dependent
mechanism [85]. This peptide blocks platelet aggre-
gation by interacting with the fibrinogen Aa chain.

Comparing the results obtained for the amino
terminal region 211–231 of GPIIIa it can be con-
cluded that this region certainly plays a significant
and peculiar role in the fibrinogen recognition pro-
cess by GPIIIa [79,82,84,85]. Some of the reported
disagreements may arise from the different exper-
imental approaches and conditions used in each
particular case. In this connection, an interesting
contribution was reported [86]. The GPIIIa derived
peptides 214–218 and 217–231 were used in a
comparative study for evaluating the activity of
both peptides in inhibition of binding of biotin-
labeled fibrinogen to ADP stimulated platelets, bind-
ing of GPIIb/IIIa receptor to immobilized fibrinogen
and binding of biotin-labeled fibrinogen to immo-
bilized GPIIb/IIIa receptor. It was found that in

all three systems the inhibitory effect of peptide
GPIIIa 214–218 was higher compared with that of
peptide GPIIIa 217–231. Cross-linking experiments
with 125I-labeled peptides verified the specific inter-
action of peptide GPIIIa 214–218 with GPIIb/IIIa
receptor on ADP-stimulated platelets, while peptide
GPIIIa 217–231 does not cross-link to the receptor.
In contrast, the latter cross-links to the Aa chain
of native fibrinogen and its recombinant wild type
and γ variant. From these results it was concluded
that the mechanism of inhibition by each peptide is
different. Peptide GPIIIa 217–231 interacts directly
with fibrinogen, while peptide GPIIIa 214–218 inter-
acts directly with the receptor [86].

The results obtained by using bacterial-expressed
fragments, spanning defined regions of the extra-
cellular domain of the GPIIIa subunit, are in good
agreement with these data while an additional lig-
and binding site on GPIIIa was identified [87]. Four
recombinant fragments, GPIIIa 56–231, 188–368,
274–403 and 274–368, were prepared and tested
for their ability to bind both soluble and immo-
bilized fibrinogen and to inhibit platelet aggrega-
tion. It was found that the recombinant fragments
GPIIIa 56–231 and 188–368, which contain both
the GPIIIa 214–218 and 217–231 sequences, bind
soluble and immobilized fibrinogen. Moreover, the
GPIIIa 274–368 sequence was proposed as a lig-
and recognition and binding domain for the γ -chain
of fibrinogen that is independent of platelet acti-
vation. Recently, two recombinant fragments, GPI-
IIa 95–373 and 95–301 were expressed and used
in fibrinogen binding assays. It was shown that
the central segment 95–373 of the GPIIIa sub-
unit binds Fg in a cation-dependent manner [88].
In agreement with these results, the participation
of the GPIIIa 179–183 region in a direct contact
with ligand-mimetic antibodies and native ligands
was suggested from studies with human-to-mouse
chimeras, which are expected to maintain the func-
tional integrity of GPIIb/IIIa and ligand-mimetic
antibodies [89].

Ligand Binding Sites Supported by GPIIIa Mutants

The exchange of the individual amino acids in
the receptor protein sequence affords valuable
information for the elucidation of their role in
the ligand binding. One has to keep in mind,
however, that this exchange cannot prove the direct
participation of the respective amino acid in the
binding process. Conformational changes, as a
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consequence of alteration of amino acids, have to
be taken into consideration as well.

Identification of natural GPIIb/IIIa mutations
occurring in Glanzmann’s thrombasthenic patients
and mutants of GPIIb/IIIa expressed in chinese
hamster ovary (CHO) cells have contributed greatly
to understanding the function of the receptors and
to evaluating the critical role of various amino acids
within the GPIIb/IIIa sequence.

Various amino acid substitutions in mutants of
the GPIIIa subunit that affect the receptor function
have been reported [90–98]. Interestingly, naturally
occurring point mutations have been identified
within the regions 109–171 and 211–222 of GPIIIa
that have been proposed as ligand binding domains.
Thus, the GPIIIa Asp119 → Tyr mutation in a
receptor variant is characterized by a complete loss
of ligand binding function of GPIIb/IIIa [90]. The
ligand binding function of recombinant GPIIb/IIIa
expressed in CHO cells following scanning Ala
mutagenesis of residues Asp119, Ser121, Ser123,
Asp126, Asp127 and Ser130 in GPIIIa has also been
examined [91]. It was found that Ala substitution
at positions Asp119 or Ser121 produces a complete
loss of receptor function. Substitution at position
Ser123 produces defects in both ligand binding and
conformational changes in the receptor induced by
ligand binding. In contrast, substitution at positions
Asp126, Asp127 or Ser130 does not affect ligand
binding function.

In the second potential ligand-interactive site of
GPIIIa two natural receptor variants, characterized
by loss of ligand binding function, contain substitu-
tions at Arg214, (Arg214 → Gln) or (Arg214 → Trp)
[92,93]. It is interesting to note that substitution of
R214 by Gln in the synthetic peptide containing the
sequence GPIIIa 211–222 resulted in a decreased
ability of this peptide to block fibrinogen binding to
purified GPIIbIIIa. Studies using mutagenesis of var-
ious amino acid residues within the GPIIIa subunit
concluded that Asp217 and Glu220 are essential
residues for the ligand binding function of GPIIb/IIIa
[94]. Ala substitution of these residues does not
affect receptor expression but abolishes the bind-
ing of activation-dependent PAC1 and -independent
OPG2 ligand mimetic antibodies.

Ligand Binding Sites on the GPIIb Subunit

Various studies using the chemical cross-linking
approach concluded that the RGD ligands bind
mainly on GPIIIa while the fibrinogen γ -chain
derived peptide γ400–411 binds specifically on

GPIIb subunit [66,70]. The first ligand binding
site on GPIIb was reported to comprise residues
294–314 (AVTDVNGDGRHDLLVGAPLYM) [66]. It
was identified by cross-linking experiments using
a suitably modified 16-amino acid fibrinogen γ -
chain peptide (KYGGHHLGGAKQAGDV). The inter-
action of this peptide with the receptor was greatly
increased in thrombin stimulated compared with
non-stimulated platelets. On the other hand, the
cross-linking reaction was markedly inhibited by
fibrinogen and the GRGDSP peptide. The synthetic
peptides GPIIb 296–306 and GPIIb 300–312 derived
from the identified binding site inhibit platelet
aggregation and binding of fibrinogen to stimu-
lated platelets and interact directly with fibrinogen
[99,100]. Cross-linking studies using peptide deriva-
tives incorporating the fibrinogen RGD (α-chain)
and KQAGDV (C-terminal γ -chain) sequences have
pointed to binding domains that vary considerably
with the peptide length and are very different in
solution from those observed in activated platelets
[78]. The small peptides cross-link to the N-terminal
of both the heavy (GPIIbH 42–73) and the light
(GPIIbL2 30–75) chains of GPIIb, while the longer
peptides are cross-linked to the C-terminal of GPI-
IbH within the 696–724 and 752–768 sequences.
The different pattern of peptide cross-linking to
GPIIb/IIIa observed in solution and in activated
platelets was attributed to the molecular flexibil-
ity of the GPIIb subunit. In another approach, the
combination of the information derived from studies
aimed at determining the epitopes of anti-GPIIb/IIIa
monoclonal antibodies and the hydropathic comple-
mentarity to the fibrinogen γ402–411 sequence led
to the hypothesis that the GPIIb 656–667 (GAHYM-
RALSNVE) sequence could be a fibrinogen γ -chain
putative binding site on the GPIIb/IIIa receptor
[101,102]. It was shown that the synthetic peptide
GPIIb 656–667 binds to soluble human fibrinogen
and inhibits the fibrinogen-mediated aggregation of
washed platelets activated with ADP [102]. It is
worth noting that the interaction of fibrinogen with
the GPIIb 296–306 and 300–312 peptides can be
inhibited by both the RGD and γ -chain peptides
[93,94], while that of GPIIb 656–667 is inhibited by
the synthetic fibrinogen γ -chain peptide 400–411
but not by GRGDS [102]. In a very recent study,
82 synthetic 20-peptides (overlapping by eight
residues), covering the extracellular region (1–992)
of the GPIIb subunit, were tested for their ability to
inhibit the ADP induced human platelet aggregation
[103]. It was found that the peptides correspond-
ing to regions GPIIb 57–64 (PWRAEGGQ), GPIIb
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265–284 (GAVEILDSYYQRLHRLRAEQ) and GPIIb
313–332 (YMESRADRKLAEVGRVYLFL) inhibited
platelet aggregation and antagonized fibrinogen
association. In addition, the above peptides did
not interfere with the binding of PAC-1 to the
activated form of GPIIb/IIIa. Solid-phase binding
assays on fibrinogen-coated plates showed that
the peptide GPIIb 313–332 bound to fibrinogen
in a concentration-dependent manner [103]. In the
same study the peptide GPIIb 294–314, which has
been proposed as a putative fibrinogen binding
domain [66], was found to be 8- and 13-times less
active than the GPIIb 313–332 peptide in inhibiting
platelet aggregation and fibrinogen binding, respec-
tively [103]. Studies focusing on determining the
minimum length of the GPIIb 313–332 site, which is
required for the maintenance of the inhibitory effect,
concluded that the GPIIb 313–320 sequence (YMES-
RADR) inhibited human platelet aggregation, bound
to immobilized fibrinogen and did not affect the bind-
ing of PAC-1 to the activated form of GPIIb/IIIa [104].
Moreover, the GPIIb 313–320 octapeptide seemed
to inhibit platelet activation through the GPIIb/IIIa-
dependent outside-in signal transduction pathway
as evidenced by inhibition of ATP secretion. In sup-
port of these results the peptide complementary
to region GPIIb 315–321 (LSARLAF) bound to the
receptor and induced conformational changes and
platelet aggregation [105,106]. Binding of the LSAR-
LAF peptide to GPIIb also induced platelet secretion
and further activation through a GPIIb/IIIa medi-
ated outside-in signal transduction [107].

Ligand Binding Sites Supported by GPIIb Mutants

Residues of GPIIb implicated in ligand binding
function have been identified by characterization
of mutations present in patients with Glanzmann’s
thrombasthenia and by site-directed mutagenesis
studies [108,109]. Among the most frequently
naturally occurring mutations within GPIIb found
in patients with Glanzmann’s thrombasthenia are
E324K and R327H [110–115]. Both mutations
are correlated with the rate of maturation and/or
intracellular transport of the complex to the cell
surface probably due to the induced conformational
changes. Interestingly, these two naturally occurring
mutations (E324K and R327H) are located within
the sequence GPIIb 313–332 proposed recently as
a putative ligand binding site on GPIIb [103]. Both
amino acids are not probably directly involved in the
ligand–receptor interaction since the sequence that
maintains almost the same amount of inhibitory

activity as the parent peptide was restricted to GPIIb
313–320 [104]. Moreover, two additional naturally
occurring mutations have been identified (L55P and
V298F) [116,117] within the GPIIb domains, which
have been proposed as putative ligand binding
sites [78,99,100,103]. The GPIIb L214P, D224V
and P145A naturally occurring mutations which
were found to impair both GPIIb/IIIa expression
and its ligand binding activity [118–120] can not
be correlated directly with any of the proposed
GPIIb binding sites. Loop swapping and site directed
mutagenesis studies concluded that more than 30
discontinuous residues in the N-terminal portion
of GPIIb are critical for ligand binding [121].
Interestingly, in the same study it was shown that
fibrinogen binding to mutants of residues 283–285
is completely abolished, in agreement with the
proposed binding site of GPIIb 265–284 [103].

COMPLEMENTARY PEPTIDES TO FIBRINOGEN
SEQUENCES

The anticomplementary method provides an alterna-
tive approach for predicting amino acid sequences
of peptide ligand and receptor binding domain mim-
ics [122]. The sequence GAPLRV was predicted as
a putative fibrinogen binding site on GPIIb/IIIa
[123]. This peptide has been shown to bind fib-
rinogen and to inhibit platelet aggregation and
clot retraction. Interestingly, the sequence GAPL is
present as residues 309–312 in glycoprotein GPIIb
and is within or adjacent to the proposed bind-
ing sites [99,100,103,104]. Moreover, it has been
found that three of the four complementary pep-
tides (EHIPA, GAPL and APLHL) predicted by the
m-RNA nucleotides coding for the RGD sequence
of Vn and vWf have characteristics expected for a
mimic of a glycoprotein GPIIb/IIIa ligand binding site
[124–126]. These peptides are inhibitors of platelet
functions, which are dependent on Fg binding to
platelets.

GPIIB/IIIA DERIVED SEQUENCES AS
CANDIDATES FOR DEVELOPING FIBRINOGEN
BLOCKERS

Table 1 summarizes the proposed contact sites of
GPIIIa and GPIIb subunits with fibrinogen. It is
evident from the presented data that there is a very
good agreement about the location of the binding
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Table 1 Proposed Ligand Binding Sites on GPIIb/IIIa and Functional Properties of the Derived Synthetic
Peptides

Subunit Proposed
ligand

binding site

Approacha used
for determining
the binding site

Inhibition of
platelet

aggregation

Binding to
fibrinogen

Reference

GPIIIa 109–171 CL — — 71
118–131 SP Yes Yes 74
63–83 CL — — 78

303–350 CL — — 78
151–199 CL — — 78
211–222 SP Yes Yes(no) 79(82,86)
217–231 SP Yes Yes 84,85,86
274–368 RF Yes Yes 87

GPIIb 57–64 SP Yes Yes 103
265–284 SP Yes Yes 103
294–314 CL Yes Yes 66,99,100
300–312 SP Yes Yes 100
313–320 SP Yes Yes 103,104
656–667 HC Yes Yes 102

a Cross-linking (CL), synthetic peptides (SP), recombinant fragments (RF) and hydropathic complementarity (HC).

sites at the N-terminal part of both subunits,
regardless of the approach which was used. The
most precise information for the ligand binding sites
was furnished from studies with peptide analogues
derived from GPIIIa and GPIIb sequences. The
performed groundwork reveals that at least the
GPIIIa 211–222, 217–231 and 118–131 and the
GPIIb 265–284, 300–312, 313–320 and 656–667
regions, respectively, can constitute a suitable
starting point for designing and developing potent
and specific fibrinogen ligands. To this end, the fact
that continuous sequences were found to represent
functional contact sites is very encouraging, since in
the case of discontinuous sites, the design and the
development of synthetic analogues would be very
difficult.

CONCLUDING REMARKS AND OUTLOOK

Peptide sequences derived from GPIIb/IIIa binding
sites have proved their ability to inhibit platelet
aggregation via a mechanism that involves fibrino-
gen blocking. Although more studies are needed, the
mode of action of these peptide sequences seems to
prevent platelet activation, which was a key point for
the drawbacks observed in the case of the GPIIb/IIIa
blockers.

Despite the extensive studies performed for
determining the binding sites of the fibrinogen on

the GPIIb/IIIa receptor and the fact that well defined
sequences have been found that inhibit platelet
aggregation and bind to fibrinogen, these data were
not suitably exploited toward developing potent
fibrinogen ligands. As a result, there is actually a
deficit of valuable data, which could advance this
approach. Studies aimed at evaluating (a) the role of
each amino acid within sequences derived from the
binding sites, (b) the conformational determinants
of the fibrinogen ligands required for high binding
affinity and (c) the specificity of the GPIIb/IIIa
derived peptides for the RGD or the fibrinogen γ -
chain sequences are expected to contribute greatly
to this field.
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78. Calvete JJ, Schäfer W, Mann K, Henschen A,
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Iruin G, Butta N, Ayuso MS, Parrilla R. A 1063G → A
mutation in exon 12 of glycoprotein (GP)IIb associated
with a thrombasthenic phenotype: mutation analysis
of [324E]GPIIb. Br. J. Haematol. 2000; 111:
965–973.

113. Ferrer M, Fernandez-Pinel M, González-Manchón C,
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